
Unconventional Arithmetic: A System for
Computation using Action Potentials

J Edwards1, S O’Keefe2, and W D Henderson1

1 Thoughtful Technology, Newcastle, UK jonny@thoughtfultech.co.uk
2 YCCSA, University of York, York, UK simon.okeefe@york.ac.uk

Abstract. This paper examines a scheme to perform arithmetic and
logic computation using time delays inspired by neuronal Action Poten-
tials. The method is reliant on a simple abstraction which utilises very
little logical infrastructure, in fact, the only requirements necessary to
carry out computation are a binary channel, a clock, and a rudimentary
instruction look-up table.

The conclusions are that the method is viable for all forms of arithmetic
and logical computation including comparison, however one practical
aspect that hinders a full move to a time delay based architecture is the
inability to perform random memory access without waiting for the data
to recirculate.

1 Introduction

It is not an overstatement to say we are fixated with digital processing. Since
Shannon’s initial exposition of methods to perform digital operations [1] a Her-
culean effort has been applied both academically and commercially to construct
ever more sophisticated methods for performing digital arithmetic and logical
operations. This paper takes a step back from that research, and addresses the
problem from a fundamentally different starting point, that of using time to rep-
resent data rather than the manipulation of transistors which expose themselves
as states within a processing unit. The theme of the work is that time is a free
resource and is only limited in resolution by the accuracy of the clock one is us-
ing, unlike electronics which require matter (atomic states) to be manipulated.
We demonstrate surprisingly simple methods to perform all major arithmetic
and logical operations using a single general processing unit which can be easily
replicated.

The paper is structured as follows: Initially the action potential method is
described in detail, this is demonstrated in the context of computation with ex-
amples for each of the arithmetic and logic operations. The paper then presents
a more complex example which demonstrates the chaining of operations. Fol-
lowing this, we examine practical considerations, most notably the crucial issue
of clock synchronisation. The paper concludes with a summary, which revisits
the deep-rooted debate comparing analogue (often biological) systems with our
predominant implementation of computation via digital methods.

2 Time Delay Processing

Models of neuronal activation are central to the description of function in the
brain, they are broadly split between statistical measures of firing rates called
Rate Codes or codes that are related to the delay between two spikes, often
referred to as Pulse Codes ([2] chapter 1).

The Action Potential model proposed by [3] is a pulse code. In the Action
Potential model the signal is transferred via spikes along a channel, and the
information is contained in the time between spikes. In this work we describe
an abstract model which is inspired by this “delay timing” value representation.
The model consists of a processing unit with a binary channel, which has the
capacity to carry unit impulses, and a clock with a variable speed, relative to an
underlying synchronising, system wide, clock. The processing unit sends operand
values as a time delay between pulses, so two unit impulses act as the “head”
and “tail” of a time based value. The resultant signal is analogue in time. Figure
1 explains this visually, the value two is represented by passing an impulse de-
limited signal across the channel, with the clock scaled to the value 1. This has
similarity with Pulse Width Modulation (PWM) [2], but with only the “head”
and “tail” impulses.

Importantly, a continuous stream of these values can exist on one processing
unit. Using this as our model for processing, all arithmetic and logical operators
can be derived.

Fig. 1. A Time Delay Unit representing the value 2 as a delay between two impulses.

3 Requirements for a Realisable Computing Architecture

At the lowest level, the major functions of a processing unit are to move data
within memory and to perform simple mathematical computation ([4] page 11).

Typically an operation requires a specific hardware part, so for instance addition
is performed using the half and full adder circuitry ([4] page 90).

Different architectural approaches have been explored. The simplest is the
Minimal Instruction Set Architecture (MISC), similar to the Java Virtual Ma-
chine (JVM)3. This sets a minimum level for the infrastructure necessary to
perform computation, and again reduces down to simple arithmetic and mem-
ory manipulation. The following section describes the architecture necessary for
all the arithmetic operations including comparison, it demonstrates that these
can be built with relative ease on a general simple binary channel and clock
architecture. The channel forms a flow from left to right, hence in the figures
below the result is calculated at the right hand side.

3.1 Addition

Addition is the simplest operation to perform with the processing unit, sim-
ply “forgetting” the “tail” of the first operand and the “head” of the second
operand. The signal then becomes the conglomeration of the two values, and
hence addition is performed. Figure 2 gives an example of this for the sum 1+1:

Fig. 2. Addition: 1+1, two values are added by ignoring the middle impulses, the full
concatenation forms the addition. The flow of the processing is the signal moving from
left to right

3.2 Subtraction

Subtraction relies on the processing unit sending two signals starting with the
same “head”, so both the signals are sent at the same time. Absolute subtraction

3 http://docs.oracle.com/javase/specs/jvms/se7/html/

http://docs.oracle.com/javase/specs/jvms/se7/html/

then becomes the time between the two “tails”, whilst performing true subtrac-
tion requires attaching a “tag” pattern of impulses, to ascertain order. This tag
is in effect a known pattern in the look-up table that is indicative of the order
of presentation of the operands. Figure 3 visualises 2 − 1, the two signals are
overlaid and subtraction becomes their difference:

Fig. 3. Subtraction: 2-1. The header indicates order and the resultant difference be
calculated through timing. The processing flows from left to right

3.3 Multiplication and Division

Multiplication and division can be performed by manipulating the clock speed
relative to the system wide clock. To perform multiplication we slow the clock
down by the first operand (op1 ∗ op2: 1

op1T) synchronised to the System wide
clock so that the second operand takes longer to transmit across the channel.
Conversely, for division, we speed the transmission up by increasing clock speed
by the first operand and hence the second operand becomes shorter. Figures 4
and 5 visualise how this works for 2 ∗ 1 and 4/2:

3.4 Logical Operators

Once arithmetic operators are implemented it is trivial to implement the AND
(addition) and OR (multiplication). The NOT operator is performed by look-up,
with a send/don’t send switch in the operator look-up table.

3.5 Comparison Operators

The implementation of the minus operator gives rise to a natural method of
comparing operands. A similar operation to negation occurs but the arrival of

Fig. 4. Multiplication: 2*1. Changing the clock speeds relative to a central clock allows
the signal to be scaled and hence multiplied. Processing is again performed from the
left to the right.

Fig. 5. Division: 4/2. Using the relative clock speed, clock scaling can perform division
as well as multiplication.

the tag impulse is recorded, if it arrives before the second impulse the first
operand is the greatest, if it arrives after then the first operand is smaller and if
they arrive at the same time then there is equality. Figure 6 demonstrates this
with a comparison between the values 2 and 1:

Fig. 6. A comparison operator, here we compare the values 2 and 1. Given that sub-
traction can be performed natively it is easy to implement comparison using a similar
method.

3.6 Multiple Operations

To build more complex statements, the operations can be arranged into the tra-
ditional Reverse Polish queue. The whole calculation then becomes a procession
through a general processing unit. Figure 7 shows how this queue might work,
implicit in this is a method to deliver the multiplication and division operand
to the clock. The figure presents an example for the expression (3+1)/2:

4 Time Delay Storage

Time delay storage through the re-circulation of a signal is not a new idea -
in fact it was the pre-eminent storage method before transistors and integrated
circuitry [5]. Several implementation methods exist [6]. The main disadvantage of
this approach is that re-circulation slows down read/write access, and electrical
circuitry requires fast op-amps4. Additionally, and more recently, alternative
work with memory enabled resisitors, so-called memristors, has also focused on
strategies for non-transistor based computation [7].

4 http://electronicdesign.com/analog/accurate-analog-delay-circuit

http://electronicdesign.com/analog/accurate-analog-delay-circuit

Fig. 7. A more complex arithmetical operation. However processing is still performed
on one channel proceeding from left to right with the right acting as a receiver

5 Practical Considerations

5.1 Large Values

Large values present a problem for processing as they are formed from long
delays, this is akin to large amounts of infrastructure to store large values in
traditional processors. One way to mitigate against this is to use more channels
to represent large numerical values, so effectively have an analogue equivalent of
a bit-width, which we will refer to as the resolution.

As a trivial example we could arbitrarily set the resolution of a time-delay
channel to one thousand, so a channel will have a time interval of a thousand
clock cycles, and hence any number up to a thousand can be represented. Two
channels could be used to encode all values up to one million by representing the
upper and lower 3 digits (0-999) by individual time-delay channels. Addition and
subtraction will function with a carry operation, and only a slight modification of
interleaving the multiplication/division operands, for example 12 ∗ 12 will equal
10 ∗ 10 + 2 ∗ 10 + 10 ∗ 2 + 2 ∗ 2.

5.2 Clock Drift

It may be necessary in this system to use more than one clock, and the limits
on the precision of the transmitter and receiver clocks are readily computed. N
is limited as follows:

– Rx clock is faster than Tx clock:

N <
1

2(ρTx

ρRx
− 1)

(1)

– Rx Clock is slower than Tx clock:

N <
1

2(1 − ρTx

ρRx
)

(2)

Surprisingly, the limits on N are independent of δT , the time quantum or
the nominal clock frequency and depend only on the relative clock drift rate
(ρTx/ρRx). Table 1 records the calculated limiting values against clock toler-
ances:

Tolerance Rx faster Tx faster
ppm than Tx than Rx

10 25000 25000
20 12500 12500
30 8333 8334
40 6250 6250
50 5000 5000
60 4166 4167
70 3571 3572
80 3125 3125
90 2778 2778
100 2500 2500

Table 1. Table of maximum usable values against clock tolerances

6 Conclusions and Further Work

The high level architecture described above represents a strong deviation from
current Von-Neumann implementations, however it has several advantages. The
above method blurs the lines between storage and processing. The circuitry re-
quired to process and store data is essentially homogeneous as memory units
are similar to computation units (apart from the concept of re-circulation). Fur-
thermore, there is also no need to implement specialist hardware for individ-
ual processing operations (e.g. multiplicative circuitry). However, there are still
strong disadvantages. Speed of processing is relative to data value size (even with
multiple channels for numerical encoding) and conditional on clock resolution.
Storage requires amplification and is limited to re-circulation time.

In the short term, our next avenue for investigation is to implement the
methods described in this paper as a virtual MISC processor. It is hoped that
this will enable direct comparison with alternative architectures, and illuminate
the selection of a medium for hardware implementation.

Longer term aims are to assess in more detail, and on a more practical level,
the comparative advantages of this approach compared to the established norm.

There are clearly areas of computation [3] that lend themselves to analogue in-
terpretation and the authors are interested in developing systems that model
these in greater detail. Many biological system perform tasks that are presently
proving difficult for digital technology. Perhaps moving to a fundamentally dif-
ferent representation as offered by encoding in time will make these problems
more amenable and we will arrive at the best of both worlds - analogue and
digital processing where best suited.

References

1. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Electrical
Engineering 57(12) (1938) 713–723

2. Maass, W., Bishop, C.M., eds.: Pulsed Neural Networks. MIT Press, Cambridge,
MA, USA (1999)

3. Hopfield, J.J., Brody, C.D., Roweis, S.: Computing with action potentials. In: Adv.
Neural Inf. Processing 10, MIT Press (1998) 166–172

4. Burrell, M.: Fundamentals of Computer Architecture. Palgrave (2003)
5. Wilkes, M.V.: Computers then and now. J. ACM 15(1) (January 1968) 1–7
6. Buckwalter, J., Hajimiri, A.: An active analog delay and the delay reference loop.

In: Proc. of IEEE RFIC Symposium. (2004) 17–20
7. Gale, E., de Lacy Costello, B., Adamatzky, A.: Boolean logic gates from a single

memristor via low-level sequential logic. CoRR - Computing Research Repository
abs/1402.4046 (2014)

	Unconventional Arithmetic: A System for Computation using Action Potentials

