
A Variable Bitwidth Asynchronous Dot Product Unit

Jonny Edwards1, Adrian Wheeldon2, Rishad Shafik2, and Alex Yakovlev2

1Temporal Computing Ltd, Newcastle upon Tyne, UK
2µSystems Group, Newcastle University, Newcastle Upon Tyne, UK

Abstract— We demonstrate a many operand asynchronous
dot product with adjustable bit width for one of the multiplica-
tion tuple operands. The generalised algorithm called MADD
relies on the commutative aspects of both the addition order and
multiplication tuple operands. The approach is deeply wedded
to asynchrony due to optimisation of the variable bitwidth
memory architecture. Although specialised, this algorithm has
a significant practical application in deep learning models
particularly in managing the variable operand size due to the
data variability, layering and optimisation process.

I. INTRODUCTION AND PRIOR WORK

Dot products are the workhorse of many signal and data
processing methods. Latterly they have gained prominence as
the main distributed processing element within deep learning
architectures, with much new accelerator design based around
systolically organised Multiply Accumulate units [1]. It is
worth noting that these designs tend to focus on memory
localisation thus minimising the energy drain of moving large
amounts of data to their processing. Specifically we treat a
dot product as this:

S =

I∑
i

wiai (1)

II. ASYNCHRONOUS DOT PRODUCT

Under a simple scheme, a variable number of (w, a) tuple
pairs can be added arbitrarily to the array at their w index
point. A dot product on this multiplexed array can be evaluated
efficiently and in a systolic way using the Multiplicative
ADD (MADD) algorithm (Algorithm 1). Here (w, a) is
mapped such that a = memory[w].

The crucial asynchronous aspect of this work is to note
that the iterating While loop is conditional on the MAXVAL,
(which is established when the data is loaded into the memory
structure) so the array clock cycles are dependent on the size
of the indexing variable. Given this advantage, the operations
cannot be clocked with a known cycle size. This necessitates
an asynchronous control signal, which effectively notifies
communicating circuits that the operation is finished.

A. MADD Algorithm: Hardware Implementation

A shift-register holds the array of multiplicands. The
MADD algorithm processes one multiplicand per clock cycle
and takes M clocks to compute the dot-product of M
multiplicand-multiplier pairs. The multipliers are represented
by the index positions of the multiplicands in the MADD array

Algorithm 1 Dot-product calculation with MADD
1: procedure DOTPRODUCT(memory)
2: acc,height← 0
3: i←MAXV AL
4: while i > 0 do . Iterate over the whole memory
5: height← height + memory[i]
6: acc← acc + height + memory[i]
7: i← i− 1
8: end while
9: control← 1

10: return acc . Contains the dot product
11: end procedure

(starting with a multiplier of one). Although the multipliers
are fixed constants, by using a large MADD array we can
emulate multiply-accumulate of variables. For example, a
MADD array of size 255 with 8-bit multiplicands can emulate
an 8× 8 variable multiply-accumulate.

Critical path length can be reduced by using the output
from the height register rather than taking the result from the
first adder. However, this would result in one extra cycle to
complete the calculation.

III. COMPARISON WITH EXISTING MACS

Two additional designs were created for comparison with
the MADD algorithm. Firstly, a Multiply Accumulator MAC
consisting of a conventional multiplier with accumulator and
secondly, a MAC with memory consisting of a conventional
multiplier with accumulator, whereby the input operands are
held in a memory array. Each design takes m clock cycles
to compute the sum of m numbers of a× b tuples.

All designs were synthesized using Synopsys Design
Compiler for a 90 nm low-power process. Results were
recorded using post-synthesis simulation without performing
layout.

Power figures obtained from this work in Table I use
real switching rates derived by performing 10 random dot
product computations – each consisting of eight terms. MADD
algorithm offers decreased propagation delay at the same
power point as the conventional MAC with memory, whilst
computing in the same number of cycles.

Figure 1 shows power scaling based on the number of
tuples summed for MADD and MAC with memory. As
the number of tuples increases, so does the power, since
more memory locations are being written to. As the number



of tuples approaches 255 (the maximum possible with the
memory sizes tested), the MADD algorithm becomes more
power efficient.

Figure 2 shows how the average power of the MADD
algorithm scales with bitness. Here the (wn, xn) tuples are
kept square such that wn and xn are the same bitness. This
is achieved by using a 2n array size for an n-bit operand.

Process Size Power Delay
Work (nm) (bit) (mW) (ns)

MAC 90 8 0.04 0.80
MAC w/mem 90 8 1.36 1.36

MADD 90 8 1.36 1.02
[2] mul 65 4 18 1

[3] MAC 180 8 1.9 2.34

TABLE I
COMPARISON OF DESIGNS FROM THE LITERATURE

0 50 100 150 200 250

1.4

1.6

1.8

2

Tuples

Po
w

er
(m

W
)

MAC w/mem
MADD

Fig. 1. Comparison of average power consumption versus number of
tuples computed.

IV. CONCLUSIONS

The MADD algorithm’s asynchronous index approach
offers a novel and viable in-memory solution to the design of
a dot product operator, with dynamically variable bitwidth for
the indexing operand. The architectural use of asynchronous
control is imperative in this design and has significant
potential in the area of deep learning neural architectures. It
is well known that bitwidth variations exists between neural
models, within neuron models and even during training [4],
and here, we offer a method that connects an asynchronous
approach that can cope with this architectural inefficiency.

Our future aims are to explore the effects of this algorithm
on large scale neural models, in particular during the training
phase, to demonstrate increased efficiencies when the weight
distributions become sparse.

6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

Bits

Po
w

er
(m

W
)

Fig. 2. MADD power scaling with bitness. n bit means n bit operands
with a 2n array size

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, (New York, NY, USA),
pp. 1–12, ACM, 2017.

[2] Aurangozeb, A. D. Hossain, C. Ni, Q. Sharar, and M. Hossain,
“Time-domain arithmetic logic unit with built-in interconnect,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
pp. 2828–2841, Oct 2017.

[3] S. Deepak and B. J. Kailath, “Optimized mac unit design,” in 2012
IEEE International Conference on Electron Devices and Solid State
Circuit (EDSSC), pp. 1–4, Dec 2012.

[4] E. Wang, J. J. Davis, R. Zhao, H. Ng, X. Niu, W. Luk, P. Y. K.
Cheung, and G. A. Constantinides, “Deep neural network approximation
for custom hardware: Where we’ve been, where we’re going,” CoRR,
vol. abs/1901.06955, 2019.


	Introduction and Prior Work
	Asynchronous Dot Product
	MADD Algorithm: Hardware Implementation

	Comparison with existing MACs
	Conclusions
	References

