
Eager Recirculating Memory to Alleviate the
Von Neumann Bottleneck

J Edwards1 and S O’Keefe2

1 Thoughtful Technology, Newcastle, UK jonny@thoughtfultech.co.uk
2 YCCSA, University of York, York, UK simon.okeefe@york.ac.uk

Abstract. This paper presents an examination of channel based time
delays and their application as units which perform storage and compu-
tation. We describe the implementation of compound arithmetic opera-
tions, and show that by recirculating the impulses along a channel, both
memory and computation can be achieved on the same general channel
unit. In addition, this approach has the further advantage of performing
arithmetic simplification eagerly, so that the resultant use of memory
is optimised by the intermediate processing during memory circulation
phases.

1 Introduction

Central Processor Unit (CPU) design is fixated on binary data storage. This is
not surprising since the development of powerful computation devices has be-
come an integral part of the technological advancement of our modern society.
A paper by Edwards et al [1] takes a step back from this approach, exploring an
alternative method of performing computation without the storage and manipu-
lation of binary data. The method proposed uses time delays across a channel as
a representation of numbers and as a computation medium, and in [1] this system
is shown to have the capacity to perform all forms of arithmetic computation.

This paper examines this approach in more detail, offering a recirculation
method to store arithmetic operation on the channel. This allows processing to
occur on the same medium as storage, effectively removing the “von Neumann
Bottleneck” (explained in more detail in Section 2). Furthermore, since the stor-
age medium is actively recirculating, operations can be processed and simplified
in an eager fashion, so that the recirculated result is optimised for when it is
externally accessed.

The paper is structured as follows: section 2 reviews the von Neumann Bot-
tleneck to assess it’s impact on decreasing CPU operation throughput. To pro-
vide the necessary background in time delay computation, section 3 summarizes
the work presented in [1]. This section then expands on this previous work, to
demonstrate that non-trivial computation can be performed, and discusses the
arrangement of compound arithmetic operations such that they can can be pro-
cessed by a single stack-less pass across a channel. The fourth section presents
a discussion of how these signals on a channel might be recirculated using the



addition of a compute flag to communicate with other processing units and
clocks. The paper concludes with a discussion of the continued development of
the algorithmic capabilities of the single time based processing units.

2 The von Neumann Bottleneck

The von Neumann Bottleneck is a term coined by John Backus in his 1978
Turing Award Lecture[2]. It describes the imbalance between the speed of compu-
tation and the speed of memory access in CPUs designed using the von Neumann
architecture. The imbalance arises because the speed with which data is acquired
from Random Access Memory (RAM) is significantly slower than the speed at
which a CPU can perform computation. This results in wait cycles while data
is acquired, and ultimately slows overall computation time. Non-parallel solu-
tions are mainly defined in terms of pipelining, enhanced caching and branch
prediction methods [3]. Alternative architectures such as the Harvard Archi-
tecture[4] also manipulate the nature of memory by providing programme and
data store with separate width data buses. To a large extent the current di-
rections in chip development have masked this problem, by using ever larger
caches and reducing processor sizes, in line with Moore’s Law [5], to increase
computation throughput. So far as the authors are aware, there are no current
computational approaches, even in parallel systems, that allow memory to also
perform computation on the same processing unit.

3 Time Delay Processing

Channel computation is defined as the arrangement of data, where data can
represent both operation and operand, into a signal. This signal when com-
municated between a encoder and decoder, via a channel (which is defined as
the communicative medium between the encoder and decoder, in the sense of
Shannon [6]) facilitates an efficient decoding, resulting in the evaluation of the
computation encoded in the data.

A discrete stream of these data (which can be loosely thought of as a pro-
gram) can exist on one channel, and the system encoder, channe, decoder (see
Figure 3 can be though of as a unit of processing, with the encoder and decoder
described by suitable finite state machines (implicitly with some requisite digital
textitstate).

Fig. 1. The channel computation arrangement

Edwards et al [1] propose an encoding approach in this domain which utilises
the temporal aspect of the communication to represent the data as a time delay
between individual impulses (see Figure 2).



This bears some similarity to various schemes, including Pulse Width Mod-
ulation (PWM) [7] and Action Potentials [8].

It is shown then that addition can be performed by the concatenation of two
values (see Figure 3) and this is easily extended to subtraction and comparison
(See [1], section 3.2). The simplicity of this approach implies small encoding and
decoding FSMs which in turn suggests beneficial real-world instantiation (which
we discuss further in section 5).

Fig. 2. A Time Delay Unit representing the value 2 as a delay between two impulses.

Fig. 3. Simple Addition can be performed by concatenation. The diagram can be read
right to left, and shows the addition operator processing two 1 magnitude signals. This
results in a single magnitude output of 2.

Furthermore, by the inclusion of two clocks measuring the relative speed of
the impulses traversing the channel extends the arithmetic operations to multi-
plication and division. The term clock in this context is a unit of time measuring
device which discretely subdivides the channel into absolutely equivalent time-
steps within the encoder and decoder. Also implicit is the notion that the clocks
start synchronised and equivalent, and a mechanism exists to scale their time



steps, effectively changing the meaning of a unit time-step at each end the chan-
nel. This is illustrated in Figure 4:

Fig. 4. Multiplication can be implemented using changes to the clock speed. The clock
speed is shown at the top right of the diagram, so 1 cycle on this channel represents 3
to an external timer.

3.1 Representing Operands and Operators

A pressing design consideration of this system is to develop a form of representa-
tion for operators. The most straightforward method is to extend the representa-
tion so that it is a tri-state channel (states 0, 1, 2). Magnitude is represented
by the time delay between impulses of value 1, and computation is represented
by the time delay between values of 2. This is illustrated in Figure 5. A suitable
(simple) FSM is necessary to map between the numerical magnitude representing
the computation, and the actual operation.

Fig. 5. Instructions can be coded as a separate state on the channel.



3.2 Performing Compound Operations

Addition and Subtraction A requirement for this computation system is
that it should utilise the least theoretical “hardware” to perform calculations.
There is some subtlety to the way compound operators are stored on the channel
as there is no stack to store values from intermediate computations. Figure 6
demonstrates this for the concatenation of addition operators.

Fig. 6. Addition requires some form of internal memory when performed using an
intermediate infix notation.

In evaluating an expression such as 2 + 3 + 3, the processing unit requires
intermediate storage to compute the compound expression. To resolve this diffi-
culty, a simple modification of the position of the operator is required. For the
system to perform addition no intermediate storage is required, so long as the
addition/subtraction operators are arranged in a prefix manner. The processing
algorithm for addition and subtraction then counts the number of operators and
concatenates accordingly. A simple working example (in Figure 7) demonstrates
compound addition of 2 + 2 + 3.

Fig. 7. Addition is a natural process, with a simple algorithm, when represented in
prefix notation.

The algorithm starts timing at the first data impulse and simply ignores the
number of impulses (encoding addition operators) past this point. It stops timing
when the subsequent data impulse arrives. So for example, a prefix of ++ would
result in skipping two impulses. The process is similar for subtraction, with the
same labeling method as proposed in the original paper ([1] section 3.2) Figure 8
explains the compound arithmetic expression 4 − 2 + 1 graphically.

Multiplication and Division Multiplication and Division are also possible
with only clock speed modification. The most suitable position of the operator



Fig. 8. Subtraction is also easily performed when specified as a prefix operation.

Fig. 9. Multiplication is naturally performed using infix. The first value is moved to the
speed register to affect the multiplication. This illustrates evaluation of the expression
3 × 2 × 2.



is infix as again this removes the necessity of the intermediate storage. The one
caveat is that values must pass to the clock register before exiting the channel.
A simple worked example evaluating the expression 3 × 2 × 2 is shown in Fig-
ure 9. This is performed without the need for intermediate storage of operands
and operators. Likewise division is similarly scaled. A simple worked example
evaluating the expression 3/1/3 is shown in Figure 10.

Fig. 10. Division is similar in process to multiplication. This illustrates evaluation of
the expression 3/1/3.

As a final summary, Figure11 collects all the ideas above and demonstrates an
arithmetic operation with arbitrary complexity, in this case 3+4×(6+5/(3−2)).

Fig. 11. Complex operations can be performed on a single channel.

4 Eager Recirculating Memory

The section above expands the description of the computational qualities of
the arithmetic processes described in the original paper. This computational
process can be further modified to become a memory system. This is achieved
by the addition of recirculation of the impulses, so the decoder renecoder the
signal by connecting two channels in a circular fashion to form a continuous
loop. The computation from this loop can be revealed by the further addition
of a computation switch which transfers the data out of the loop. Figure 12
represents this recirculation graphically.

When the switch is toggled and the circuit becomes open, computation occurs
and the data emerges from the channel. Significantly, computation and storage



Fig. 12. Memory is implemented using recirculation of the impulses.

are held together on the same channel. One interesting aspect of the model is
that during recirculation, computation can be silently performed, progressively
simplifying the data stored in memory. This performs optimisation of the stored
expression for free, and simplifies the memory constraints by removing any pro-
cessable impulses prior to being made externally available through the setting of
the computation switch. The simplest example application of this eager memory
is the addition of 1 + 1. This is the shown in Figure13, and is trivially simplified
to 2 by one circulation of the impulses around the channel loop.

Fig. 13. Instructions can be simplified whilst circulating in memory.

Addition and subtraction operations only manipulate the direct signal on the
channel, hence are amenable to simplification. In contrast, multiplication is more
problematic since it produces multiplicatively larger operands which, as they
are temporally encoded, increase the amount of time necessary for computation.
Instead, it may (and we are actively researching) be more efficient to leave the
operands in their unoptimised pre-calculation format as multiplicative tuples.
An example of this is shown in Figure 14.

So, the output value is only evaluated when re-entering when the computation
is directly decoded into it’s resultant digital form. The enticing by-product of this
is that large numbers can be encoded as multiplications, so the system has an



Fig. 14. The intermediate relative clock speeds used in multiplication may prohibit
the optimisation of an expression held on the processing unit.

implicit computational compression scheme, although care must be taken with
prime numbers (which we are currently investigating as a part of our further
research).

The idea of laziness is not a new concept in the field of language design and
computation. Several modern languages, particularly functional ones, operate
an implicit laziness; holding on to computation without extending them out
into memory. Even popular multi-paradigm languages like Python have a yield

operator which stalls computation until a do step.

5 Conclusion and Future Developments

Time based computation offers an alternative theoretical strategy to traditional
digital computation. In this paper we expand the model to incorporate more
compound operations and discuss how they might be held in memory. Further-
more, we have demonstrated that individual time based units can perform both
memory and computation and with a minimal modification to the originally pre-
sented framework. Using the discussed scheme, we have no delineation between
memory and computation and this lack of bottleneck has the added advantage
of allowing intermediate expression optimisation during storage. WHilst

The next step is to build a more general instruction set that incorporates
Minimum Instruction Set Computing (MISC) type instructions. in the hope of
building a fully turing complete universal processing unit This will probably in-
volve the linking of individual units into more powerful arrays such that sequence,
selection and iteration can occur as a part of inter-channel unit communication.
It is also hoped that future research will assess the nature of optimising mem-
ory and demonstrate processes that may benefit from its application. It may be
possible to perform a system warm-up whilst loading the data into memory, so
that effectively much of an algorithmic process has already been worked through



prior to program inception. This is effectively a compilation phase for a more
extensive time-based processing system.

6 Acknowledgments

The authors would like to thank Mark Hill, for help in preparation of the dia-
grams.

References

1. Edwards, J., O’Keefe, S., Henderson, W.D.: Unconventional arithmetic: A system
for computation using action potentials. In: Proc. of Unconventional Computation
and Natural Computation. (2014) 155–163

2. Backus, J.: Can programming be liberated from the von neumann style?: A func-
tional style and its algebra of programs. Commun. ACM 21(8) (August 1978)
613–641

3. Shen, J.P., Lipasti, M.H.: Modern processor design : fundamentals of superscalar
processors. McGraw-Hill Higher Education, Boston (2005) Index.

4. Cohen, B.: Howard Aiken, Portrait of a computer pioneer. The MIT Press (2000)
5. Moore, G.E.: Readings in computer architecture. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA (2000) 56–59
6. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Tech-

nical Journal 27(3) (1948) 379–423
7. Maass, W., Bishop, C.M., eds.: Pulsed Neural Networks. MIT Press, Cambridge,

MA, USA (1999)
8. Hopfield, J.J.: Pattern recognition computation using action potential timing for

stimulus representation. Nature 376(6535) (1995) 33–36


	Eager Recirculating Memory to Alleviate the Von Neumann Bottleneck

