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WHY?
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THE COMPUTATIONAL LIMITS OF DEEP LEARNING Nei/ C. Thompson, Kristian Greenewald MIT (JULY 2022)



By way of comparison, OpenAl’s GPT-3 and Meta’s OPT were estimated to
emit more than 500 and 75 metric tons of carbon dioxide, respectively,
during training. GPT-3’s vast emissions can be partly explained by the fact

that it was trained on older, less efficient hardware. But it is hard to say what

) \
the figures are for certain; there is no standardized way to measure carbon -’ L
dioxide emissions, and these figures are based on external estimates or, in MIT Technol

Meta’s case, limited data the company released. Review


https://www.technologyreview.com/2022/11/14/1063192/were-getting-a-better-idea-of-ais-true-carbon-footprint/
https://www.technologyreview.com/2022/11/14/1063192/were-getting-a-better-idea-of-ais-true-carbon-footprint/
https://www.technologyreview.com/2022/11/14/1063192/were-getting-a-better-idea-of-ais-true-carbon-footprint/

“We need to rethink the entire stack — from software to hardware,” says Aude Oliva, MIT
director of the MIT-IBM Watson Al Lab and co-director of the MIT Quest for Intelligence. “Deep
learning has made the recent Al revolution possible, but its growing cost in energy and carbon

emissions is untenable.”



What is Temporal Computing?



Computing with delays in time so the number 6 becomes
+ <click> 6 second’s <click>
Addition 9 =
» <click> 6 seconds <click> 3 seconds <click>
All vital operations performed (2014)
THE CONJECTURE
* Addition 9 =
« <click> 6 femtoseconds <click> 3 femtosecond’s <click>

* petahertz processing



7 Reason for Thinking Temporally

Time is free.
No Need for gates ... accumulate and scale
The representation is more efficient.

Easy to Parallelise.

o s Wb =

Clocks are Fast.

1. Waves are even faster.

Can be implemented in Analog and Digital

N o

. And on a variety of media from CMOS to Radio Waves

8. Its what the brain does.



Simple
clocks are
still fast ...

Oscillator name State variable Frequency (Hz) Energy/cycle (J) Possible coupling mechanism
Ring oscillator Electric Up to 20 GHz 10 Electrical
Relaxation oscillator based on Electrical Up to 10 GHz 107Y Electrical
phase-transitions

LC oscillator Electrical Up to 100 GHz Electrical
Superconducting oscillator Electric and magnetic ~ Several 10 GHz 1077 Electrical, inductive, and capacitive
Mechanical (NEMS) oscillator/ Mechanical Up to 20 GHz 10~ Electrical or mechanical
RBO

Spin torque oscillator (STO) Magnetic Upward 50 GHz 107 Electric, magnetic or spin wave
Chemical Electrochemistry 10° No data No data

Magnetic anisotropy controlled Magnetic Up to 20 GHz No data Electrical
parametric

Spin-Hall oscillator Magnetic Up to 20 GHz 10716 Electric, magnetic or spin wave
SET device Electric 10 GHz 10718 Electrical




Temporal Computing: Groups

* NIST Uni Maryland (Advait Madhaven)

* Tim Sherwood’s group Uni Cal. Santa
Barbara (Advait Madhaven)

* UGEMM group (Wisconsin)
* Prof James Smith’s (Wisconsin) work
* York Group (Me and Simon!)

« Temporal Computing (Me and Prof Alex
Yakovlev and team)
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https://www.nist.gov/programs-projects/temporal-computing



Min/Max

NIST/ Uni Cal Santa Barbarg s~
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A. Madhavan, T. Sherwood and D. Strukov, "Race Logic:

Abusing Hardware Race Conditions to Perform Useful

Computation," in IEEE Micro, vol. 35, no. 3, pp. 48-57,

May-June 2015, doi: 10.1109/MM.2015.43 (©



Red/Write/Erase

Racetracks

640 nm

' T Recovery track A:
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d) Recovery e) Erase
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¢) Read

a) Inputs b) Write

in IEEE Journal on Exploratory Solid-State Computational

H. Vakili et al., "Temporal Memory With Magnetic Racetracks,
Devices and Circuits, vol. 6, no. 2, pp. 107-115, Dec. 2020, doi: 10.1109/JXCDC.2020.3022381



Min/Max/Add/Mul

UGEMM
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D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim and J. S. Miguel, "uGEMM: Unary
Computing for GEMM Applications,” in IEEE Micro, vol. 41, no. 3, pp. 50-56, 1

May-June 2021, doi: 10.1109/MM.2021.3065369.



Min/Max/Gtr/less/equal

ames Smith

Table 1. All 2-ary s-f functions.

a<ba=bb<a function name symbol
a aorbh b ifa <b thena;elseb min A
a aorbh o | ifa <bthena;elsex less or equal =<
a » a ifa # b thena;else not equal #*
a o0 b ffa <b thena exclusive min XA
else if b < g then b ; else =
a oo o0 ifa < b thena;else o less than <
aorh a ifa =b thena;else b max v
b w0 a ifa > b then a exclusive max Xv
else if b > a then b ; else =
w gorb a ifa > b thena; else o greater or equal =
w aorb w | ifa=>bthena;elsex equal =
0 o0 a ifa > b thena; else @ greater than

2.2 Symbols and Notation

Symbols for the primitive functions are shown in Figure 2.

g oD D

ifavab then} =g =min(a, b) y= max(a, b) if a = b then y=a
elsey=oo elsey=c0
Relational Relational
f Commutative
Non-Commutative Commutative Commutative

Figure 2. Symbols representing the various primitive operators that may be used in network
schematics. The symbol v4 represents any of the non-commutative relational operations.

https://arxiv.org/abs/2001.04242



Min/Max/Add/Mul/Sub/MAC

And Findlly ...

A Variable Bitwidth Asynchronous Dot Product Unit

Jonny Edwards', Adrian Wheeldon?, Rishad Shafik?, and Alex Yakovlev?

"Temporal Computing Ltd, Newcastle upon Tyne, UK
2uSystems Group, Newcastle University, Newcastle Upon Tyne, UK

Abstract—We demonstrate a many operand asynchronous Algorithm 1 Dot-product calculation with MADD

dot product with adjustable bit width for one of the multiplica- I: procedure DOTPRODUCT(memory)

tion tuple operands. The generalised algorithm called MADD 2

relies on the commutative aspects of both the addition order and

ion tuple op: ds. The approach is deeply wedded *

to asynchrony due to optimisation of the variable bitwidth 4
memory architecture. Although specialised, this algorithm has 5
a significant practical application in deep learning models 6:
particularly in managing the variable operand size due to the 7.
data variability, layering and optimisation process. 8
I. INTRODUCTION AND PRIOR WORK 9:

10:

Dot products are the workhorse of many signal and data
processing methods. Latterly they have gained prominence as

acc, height « 0

i MAXVAL

while i > 0 do = Iterate over the whole memory
height « height + memory/i]
ace + acce + height + memoryl|i]
ie—i—1

end while

control + 1

return acc > Contains the dot product

11: end procedure

the main distributed processing element within deep learning

*A Variable Bitwidth Asynchronous Dot Product Unit Fresh Idea
Jonny Edwards, Adrian Wheeldon, Rishad Shafik, and Alex Yakovle 2019

ASYNCH19

The MADD algorithm: A Graphical Summary
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Fig. 4. A geometric view of the MADD algorithm. Here we perform the
operation (4 x 10)+ (4 = 4) right to left by accumulating the "height™ at the
index point



Even the definition is contentious
Research is “patchy” at best
The benefits are too “hand-wavey”
* There’s no convincing “Physics”
Race logic is simple
* The graph solutions are space-time tradeoffs
* Min/max are only a subset of useful operations
* Tropical algebras may help
* The memory work is very isolated from compute
No mention of Turing Completeness
My work is only partially in hardware
There is no fixed platform
No taxonomy
There’s no killer problem



We have a starting point here.
» Taxonomies and definitions
Ramps and Capacitors are useful.
* And astart has been made.
Infinite memory is interesting.
General speedup may be the killer problem.
An implementation platform may come along with
world-changing characteristics.
The 1-bitidea ...



THE ELEPHANT(S) in the room

1. MODERN HARDWARE is NOT going to scale for
next-gen Al

2. QUANTUM COMPUTING will not be useful in my
lifetime.



Binary in
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